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Oscillatory thermocapillary convection in open cylindrical annuli heated from the
outer wall is investigated numerically. Results at fixed inner/outer radius ratio of 0.5,
aspect ratios (Ar) of 1, 2.5, 3.33, and 8, zero Biot number, and a Prandtl number of
6.84 are obtained and compared with experiments (Part 1 of this paper). Convection
is steady and axisymmetric at sufficiently low values of the Reynolds number (Re).
Transition to oscillatory states occurs at critical values of Re which depend on Ar.
With Ar = 1, 2.5 and 3.33, we observe 5, 9 and 12 azimuthal wavetrains, respectively,
travelling clockwise at the free surface near the critical Re. With Ar = 8, there are
20 standing waves near the critical Re. Experimental results in Part 1 support this
finding. A multi-roll structure appears beyond the critical Re in shallow liquid layers
with Ar = 3.33 and 8. The critical Re and frequency are in qualitative but not in
quantitative agreement with the experimental ones. Either heat loss from the free
surface or heating from the surroundings to the free surface stabilizes the flow, and
the critical Re increases with increasing Biot number while the critical period goes
down. The numerical results agree better with the experimental ones if the free surface
is assumed to be heated as shown in Part 1. We have also computed supercritical
time-dependent states and find that while the non-dimensional frequency increases
with increasing Re near the critical region, it approaches an asymptote at super-
critical Re.

1. Introduction
Since Chang & Wilcox (1976) found that thermocapillarity plays an important role

in crystal growth a number of investigations have treated thermocapillary convection.
Smith & Davis (1983) discussed the instability mechanisms using linear stability
theory of flows in an infinite liquid layer. Kuhlmann & Rath (1993) considered the
linear instability of steady axisymmetric thermocapillary flow in a cylindrical liquid
bridge with an aspect ratio of 1. They found that the most dangerous disturbance
was either a pure hydrodynamic steady mode or an oscillatory hydrothermal wave,
depending on Pr. Wanschura et al. (1995) further investigated the primary instability
of axisymmetric steady thermocapillary flow in a cylindrical liquid bridge, and
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confirmed the earlier results of Neitze et al. (1993). Savino & Monti (1996) showed
the oscillatory behaviour of temperature and velocity profiles in liquid bridges using
three-dimensional simulations. Their studies revealed two-lobed rotating as well as
pulsating isotherm patterns.

A rich body of thermocapillary problems in open rectangular cavities have been
numerically investigated. Peltier & Biringen (1993) provided a stability diagram as a
function of aspect ratio with a Pr =6.78 liquid in two-dimensional rectangular cavities.
They found a critical aspect ratio near 2.3 and minimum critical Marangoni number
near 20 000. Sab, Kuhlmann & Rath (1996) investigated steady three-dimensional
thermocapillary convection in an open cubic container. They showed the damping
effect of the front and back walls on the temperature field by comparing three-
dimensional with two-dimensional simulations in steady state flows. Xu & Zebib
(1998) studied oscillatory thermocapillary-driven convection in an open cavity using
two- and three-dimensional simulations. They found that there were two disjoint
neutral curves for Pr � 4.4, and that the existence of spanwise waves could reduce
the critical Re. Three-dimensional simulations of thermocapillary convection in an
open cylindrical annulus were first reported by Sim & Zebib (2002a). Four kinds
of isotherm patterns at the free surface were observed with increasing Re: a two-
and a three-lobed clockwise rotating pattern, and a two- and a three-lobed pulsating
pattern. They found that heat loss from the free surface provided an explanation
for the dependence of the critical Marangoni number Mac on the container size at
fixed aspect ratio which was observed in experiments (Kamotani, Ostrach & Masud
2000).

While two-dimensional models of open rectangular cavities predicted oscillatory
thermocapillary convection (Xu & Zebib 1998), it could not be realized in axisymme-
tric simulations with open cylinders (Sim & Zebib 2002b). Thus, a three-dimensional
model is necessary to compute these flows. In the present paper we report numerical
results on oscillatory thermocapillary convection in open cylindrical containers heated
from the outer wall, constituting a model for the Czochralski crystal growth system
sketched in figure 1(a). The influence of the aspect ratio on the critical Reynolds
numbers and frequencies, and the pattern of convection is studied and compared
with available experimental results.

2. Mathematical model
The physical system is shown in figure 1 of Part 1 (Schwabe, Zebib & Sim 2003) for

the microgravity experiment MAGIA, and the parameters are shown in figure 1(b).
It is a cylindrical annulus with inner and outer radii, Ri and Ro, which is filled with
an incompressible, Newtonian fluid of Prandtl number 6.84 to a height H . The aspect
ratio, Ar, is defined as (Ro − Ri)/H , and the values of Ar are 1, 2.5, 3.33, and 8 (which
correspond to different values of H with Ri and Ro fixed, Ri/Ro = 0.5). The vertical in-
ner and outer walls have temperatures, Ti = Tcold and To = Thot, respectively. The bottom
is an adiabatic solid wall. The horizontal free surface is assumed non-deformable and
has convective heat loss to the surroundings with the ambient temperature, T ∗

∞(= Tcold).
The surface tension is assumed a linear function of temperature,

σ = σr − γ (T ∗ − T ∗
r ) (2.1)

where γ = −∂σ/∂T ∗, and subscript r and superscript ∗ represent a reference state and
dimensional quantity.
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Figure 1. (a) The Czochralski technique and (b) the physical system. The aspect ratio Ar=
(Ro − Ri)/H of the annular gap can be changed between 8 and 1 by adjusting H with a
movable bottom.

In a microgravity environment, the non-dimensional governing equations are as
follows:

∇ · v = 0, (2.2)

Re

(
∂v

∂t
+ ∇ · (vv)

)
= −∇P + ∇2v, (2.3)

Ma

(
∂T

∂t
+ ∇ · (vT )

)
= ∇2T , (2.4)

where v is the non-dimensional velocity vector, and P and T are the non-dimensional
pressure and temperature. Re is the Reynolds number, Pr is the Prandtl number, and
Ma is the Marangoni number defined by

Re = γ
�T H

νµ
, Pr =

ν

α
, Ma = Pr Re, (2.5)

where ν, µ, and α are kinematic viscosity, dynamic viscosity, and thermal diffusivity
respectively. The length, velocity, pressure, and time are normalized with respect
to H , γ�T /µ, γ�T /H , and µH/γ�T , respectively, where �T = Thot − Tcold. Non-
dimensional temperature, T , is defined by T = (T ∗ − Tcold)/�T .

The velocities in the r-, θ-, and z-directions of a cylindrical coordinate system are
u, v, and w, respectively. With the free surface assumed non-deformable, the boundary
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Grid numbers (r × z × θ ) Critical Re Azimuthal waves

(a) 51 × 51 × 21 740 5
61 × 61 × 31 740 5
71 × 71 × 41 740 5

(b) 51 × 41 × 31 510
61 × 51 × 41 490 9
71 × 61 × 51 490 9

(c) 61 × 51 × 41 490 13
61 × 51 × 61 490 12
71 × 61 × 51 490 12
71 × 61 × 81 490 12

(d) 61 × 41 × 51 600 24
71 × 51 × 56 570 24
71 × 51 × 80 570 21
71 × 51 × 100 560 20
71 × 51 × 112 560 20

Table 1 Grid refinement studies with Bi= 0 and (a) Ar= 1, (b) Ar= 2.5, (c) Ar= 3.3,
and (d) Ar= 8.

conditions become

∂u

∂z
+

∂T

∂r
= 0,

∂v

∂z
+

1

r

∂T

∂θ
= 0, w = 0,

∂T

∂z
= −Bi T at z = 1, (2.6)

u = 0, v = 0, w = 0,
∂T

∂z
= 0 at z = 0, (2.7)

u = 0, v = 0, w = 0, T = 0 at r = Ri/H, (2.8)

u = 0, v = 0, w = 0, T = 1 at r = Ro/H. (2.9)

The Biot number in equation (2.6) is given by Bi =hH/k where h is a heat transfer
coefficient to the surroundings at the cold wall temperature, and k is the thermal
conductivity of the liquid.

3. Numerical aspects
The governing equations (2.2)–(2.4) and (2.6)–(2.9) are solved by a finite volume

scheme with second-order accuracy in space and with an implicit method in time.
The SIMPLER algorithm of Patankar (1980) is used to handle the pressure coupling.
Non-uniform grids (grid-stretching factor 1.1) are constructed with finer meshes
in the regions under the free surface and near the bottom and sidewalls where
boundary layers develop. The azimuthal direction has uniform grids in all cases. All
computations are started with either zero or steady-state initial conditions at lower
Re. In order to examine grid dependence, critical Reynolds numbers, Rec, which
are the largest Re resulting in steady states, are computed with various grids in
each aspect ratio. Convergence criteria for a steady state are |sn+1 − sn| � 10−10 and
|sn+1 − sn|/|sn+1| � 10−4, where s is any of the variables (u, v, w, T ) at all points and
n is the time marching level. In addition, time histories of velocities and temperatures
at the mid-point of the free surface, computed with various grids and time steps, are
compared. Table 1 shows Rec found using different grids with Ar =1, 2.5, 3.33 and
8, respectively. Re is varied in increments of 10 in order to estimate Rec. These steps
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Figure 2. Surface temperature distribution (T ∗ − To) with Pr= 97, Re= 510, Ar= 0.889
(Ri/H =0.111, Ro/H = 1), Ti = Thot and To = Tcold . The numerical results with Bi= 2 are
in good agreement with experiments (Kamotani et al. 1995).

(�Re = 10) are less than 3% of the reported Rec. The errors in the reported values
of Rec can be as large as 8% with Ar =8.

The numerical code is also validated by comparison of steady surface temperature
distribution with experimental results (Kamotani, Ostrach & Pline 1995) with reversed
heating (hot inner and cold outer walls), Ti =44 ◦C and To = 30 ◦C, and Ro = 5 cm,
Ri = 0.555 cm and H =5 cm with 10 cSt silicone oil. The parameters for the simulation
are Pr = 97, Ar = 0.889 and Re = 510. The numerical results with Bi = 2 are in good
agreement with those from experiments as shown in figure 2.

4. Results and discussion
4.1. Azimuthal flow structures with Bi =0

Rec for onset of oscillations with Ar = 1 is 740. At Re =740, the flow is steady and
the isotherms on the free surface are circular lines, i.e. axisymmetric. Figure 3 shows
the time history of the temperature near the mid-point (r = 1.45, z =1, θ = 0) of the
free surface with various supercritical Re. Figure 3(a) is computed from zero initial
conditions, and figures 3(b) and 3(c) are computed from the same steady-state
initial conditions (Re = 700). As expected, starting from the same initial conditions
oscillations begin earlier in time at the higher Re. While the amplitudes of temperature
oscillations are larger at the higher Re, the mean temperature at these points decreases
with increasing Re. All calculations were continued until a time-asymptotic state was
reached as shown in figure 3.

Figure 4 shows instantaneous temperature distributions on the free surface with
various Re, with figures 4(a) and 4(b) corresponding to the last time of figures 3(a)
and 3(c), respectively. The pattern of five azimuthal waves remains unchanged with
increasing Re. Figures 5(a) and 5(b) show one cycle of the free surface isotherm
(T = 0.8), and of the temperature oscillations at a fixed radial location on the
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Figure 3. Time history of the temperature near the mid-point of the free surface with Ar= 1,
Bi= 0 and (a) Re= 800, (b) Re= 1000 and (c) Re= 1500. The same initial conditions are
employed in (b) and (c). The oscillations begin earlier in time at the higher Re.
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Figure 4. Surface temperature distribution with Ar= 1, Bi= 0 and (a) Re= 800 (grid: 51(r) ×
51(z) × 21(θ )), (b) Re= 1500 (51 × 51 × 21) and (c) Re= 2500 (71 × 71 × 41). The pattern of
five waves remains unchanged with increasing Re.
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Figure 5. One cycle of (a) the free-surface isotherm (T =0.8) and (b) temperature oscillations
at the free surface and r = 1.47 with Re= 800, Ar= 1 and Bi= 0. Five azimuthal waves are
travelling clockwise.
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Figure 6. Frequency of temperature oscillations with various Re, for Ar = 1 and Bi= 0. While
the frequency near Rec increases with increasing Re, it approaches an asymptotic value in
highly supercritical states.

free-surface with Re =800. It is seen from figures 4 and 5 that five azimuthal
waves are rotating clockwise in agreement with a similar finding in the experiments
(figure 11a in Part 1). The isotherms have the same shape when rotated by 2

5
π. Thus

if one measures the temperature at a fixed point on the free surface, the frequency of
the temperature oscillations will be five times the isotherm rotation frequency.

Figure 6 shows the frequency (F ), calculated by a Fourier decomposition of the
temperature signal at a fixed point, corresponding to various Re. While F increases
with increasing Re near the critical region, it decreases with increasing Re in the
supercritical region until Re = 2500. Above Re =2500, F is constant within the error
bounds of the simulations. The F dependence on Re is in qualitative agreement with
the two-dimensional results of Chen & Hwu (1993).

Rec with Ar =2.5 and 3.33 is found to be 490. The corresponding temperature
distributions on the free surface are shown in figures 7 and 8. While nine azimuthal
waves near the critical region appear on the free surface with Ar = 2.5, ten azimuthal
waves are observed at Re = 800 as shown in figure 7. This is in reasonable agree-
ment with the results from the experiments in figure 12(c) of Part 1, where 11 azimuthal
waves are observed at Re =2.5Rec(7500). With Ar = 3.33, the twelve azimuthal waves
are rotating clockwise near the critical region in figure 8(a). It is evident that the
number of azimuthal rotating waves near the critical region increases with increas-
ing Ar.

Figures 9 and 10 show temperature fluctuations (deviation from the time-averaged
mean temperature at each position) at the free surface and one cycle of temperature
fluctuations at fixed radial locations on the free surface corresponding to figure 8(b).
The source and sink at the free surface are observed near θ = π and 0, respectively.
The waves travel both clockwise and counterclockwise from θ = π to θ = 0. The
fluctuations are stronger near the inner, cold wall as shown in figure 10.
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(a) (b)

Figure 7. Temperature distribution on the free surface with Ar= 2.5, Bi= 0 and (a) Re= 525
and (b) Re= 800 (grid: 61 × 51 × 41). The pattern of nine azimuthal waves in (a) changes as
Re increases to ten waves in (b).

(a) (b)

Figure 8. Temperature distribution on the free surface with Ar= 3.33, Bi =0 and (a) Re= 550
and (b) Re= 900 (grid: 71 × 61 × 81); (a) is a rotating wave and (b) is a wave pattern travelling
from a source in the opposite direction to a sink.

A mesh of 71 × 51 × 112 with Ar =8 is necessary to resolve the increased number of
azimuthal wavetrains. Rec with Ar = 8 is 560. Figure 11 gives temperature distributions
on the free surface with Re =625, while temperature fluctuations on the free surface
are shown in figures 12 and 13. Twenty azimuthal wavetrains are found on the free
surface. The waves are pulsating, but not pure standing waves as shown in figure 13.
The inner wall appears to be the source of the waves: the waves are generated at
the inner cold wall and travel to the outer hot wall as shown in figure 14. This
wave-propagation direction is in good agreement with the hydrothermal waves in
the infinite-layer model (Smith & Davis 1983) and the rectangular cavity simulations
(Xu & Zebib 1998). However, while the oscillations are stronger near the cold wall in
the open annulus, they are stronger near the hot wall of the rectangular cavity (Xu &
Zebib 1998). This difference may be due to a curvature effect. We thus have travelling
r-waves and nearly standing θ-waves in cylindrical shallow liquid layers. As standing
waves result from a linear superposition of a pair of counter-rotating waves, we can
attribute the observed deviation from pure standing waves to strong nonlinearity and
the superposed outward wave propagation. As Re increases these waves propagate
far from the inner wall. The critical wavelength λ=2.5 (Pr = 6.84) from linear theory
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Figure 9. Snapshot of free-surface temperature fluctuations corresponding to figure 8(b) (Ar=
3.33, Bi= 0, Re= 900). A source and sink pattern is observed near θ = π and 0, respectively.
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Figure 10. One cycle of temperature fluctuations at the free surface and (a) r = 3.54, (b) r =
4.77 and (c) r = 6.37 corresponding to figure 9 (Ar= 3.33, Bi= 0, Re= 900). The lines are from
smooth interpolations through calculated points. The fluctuations decrease with increasing r
towards the hot side.
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Figure 11. Temperature distributions on the free surface with Ar= 8, Bi= 0 and Re= 625
(grid: 71 × 51 × 112). The inner cold wall appears to be the source of the waves.
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Figure 12. Snapshot of free-surface temperature fluctuations corresponding to figure 11
(Ar= 8, Bi= 0, Re= 625) indicating a standing wave pattern.

(Smith & Davis 1983) implies 20 waves at the inner wall, which is in good agreement
with our numerical result. In addition, the angle of wave propagation between the tem-
perature gradient and the wavevector varies from 50◦ to 60◦ at, respectively, θ = π/2
and 3π/2 as shown in figures 12 and 16(a). This is in good agreement with about 60◦

from linear theory and 40◦–60◦ from experiments (Garnier & Chiffaudel 2001).

4.2. Spiral and roll structures with Bi =0

Figure 15 shows shadowgraphic snapshots at the free surface with two values of
Re and Ar = 3.33. Because the waves travel from the inner to the outer wall, and



Oscillatory thermocapillary convection. Part 2 269

(a)

(b)

1/4 Cycle
1/2 Cycle
3/4 Cycle
1 Cycle

π/2 π 3π/4

θ

Te
m

pe
ra

tu
re

 f
lu

ct
ua

ti
on

s
0.02

0.01

0

–0.01

–0.02
0.0010

0.0005

0

–0.0005

–0.0010

Figure 13. One cycle of the free-surface temperature fluctuations at (a) r = 11.45 and (b) r =
15.3 corresponding to figure 12 (Ar =8, Bi= 0, Re= 625) confirming the standing wave nature
of the phenomenon.
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Figure 14. Snapshots of meridional temperature fluctuations (θ =0) at four evenly distributed
instants within one cycle associated with figures 11, 12 and 13 (Ar = 8, Bi= 0, Re= 625). Waves
travel from the inner cold to outer hot walls in qualitative agreement with the infinite-layer
model (Smith & Davis 1983) and the rectangular cavity simulations (Xu & Zebib 1998).

rotate clockwise, a supercritical spiral structure appears on the free surface as shown
in figure 15(a). At higher Re, a pattern with travelling r-waves and source–sink θ-
waves which propagate from a source in opposite directions to a sink is shown in
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(a) (b)

Figure 15. Shadowgraphic snapshots (contours of ∇2T ) at the free surface corresponding
to figure 8 (Ar = 3.33, Bi= 0. (a) Re= 550 and (b) Re= 900): (a) shows azimuthal clockwise
rotating waves, while (b) indicates azimuthal waves with a source and sink near respectively
θ = π and 0.

(a) (b)

Figure 16. Shadowgraphic snapshots (contours of ∇2T ) at the free surface corresponding to
figure 11 (Ar = 8, Bi= 0, (a) Re= 625 and (b) Re= 700). Both (a) and (b) show azimuthal
standing waves with a source and sink near respectively θ = 0 and π.

figure 15(b). However, with Ar = 8 figure 16 indicates that slightly supercritical
convection is in the form of travelling r-waves and pulsating source–sink θ-waves.
These two kinds of spiral patterns are in qualitative agreement with experimental
results (Garnier & Chiffaudel 2001).

Figure 17 shows streamlines at Rec with various Ar and Bi =0. The flows are
steady and axisymmetric. A single-roll structure is observed at each Ar. Figure 18
shows snapshots of meridional streamlines at θ = 0 with various Ar and supercritical
Re. At steady state, only the single-roll structure is available with Ar = 1, 2.5, 3.33
and 8. However, just above critical, two and three rolls are observed with Ar = 3.33
and 8, respectively. This agrees with figure 10 of Part 1 for Ar =8. The number of
rolls increases with increasing Ar. We can expect the multi-roll structure to appear
beyond Rec in the case of shallow liquid layers. The axisymmetric results are very
different from those of two-dimensional rectangular cavities reported by Xu & Zebib
(1998), where a critical Ar exists, the multi-structure appears at subcritical Re, and the
flow can be stable with multi-structure in the restabilized region (highly supercritical
Re). However, the structures of three-dimensional states in shallow cylindrical and
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Figure 17. Streamlines at the critical steady state with Bi= 0, various Rec and Ar: (a) 740
and 1, (b) 490 and 2.5, (c) 490 and 3.33, and (d) 560 and 8. Plots are shown at different scales.
A single-roll structure occurs at the steady state in each Ar.
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Figure 18. Snapshots of meridional streamlines at θ = 0 with Bi= 0, various supercritical Re
and Ar: (a) 800 and 1, (b) 525 and 2.5, (c) 550 and 3.33, and (d) 625 and 8. Multi-cells occur
near transition in shallow liquid layers with Ar � 3.33.
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Figure 19. Rec and τc corresponding to various Ar at various Bi cooling the free surface.
Heat loss from the free surface stabilizes the flow, and Rec increases with increasing Bi at fixed
Ar; τc decreases with Ar (Bi) at fixed Bi (Ar). Note that the curves here are for constant h so
that Bi decreases along these curves with increasing Ar.

rectangular cavities have in common travelling multi-cells from the cold to hot corners
with a standing, pulsating pattern in the third direction.

4.3. Critical Reynolds numbers and periods

Figure 19 shows the effect of Bi on Rec and the critical dimensional period, τc. The
numerical results with Bi = 0 are in good qualitative but not in good quantitative
agreement with the experiments (see Part 1). The value of h is 25 to 250 Wm−2 K−1

for gases in forced convection. Because of evaporation, the value will be increased
substantially. It can be seen that heat loss from the free surface stabilizes the flow,
and Rec increases with increasing Bi, whereas τc decreases with increasing Bi. It is
observed that better comparison with experiments is achieved at the larger values of
Bi.

In Part 1, we argue that the free surface in the experiments is effectively heated by
the surroundings. This is modelled here by assuming

T∞ =
(T ∗

∞ − Tcold)

�T
=

γH

νµ

(T ∗
∞ − Tcold)

Re
.

Thus, the last boundary condition in equation (2.6) at z = 1, with the material para-
meters listed in table 1 of Part 1, is replaced by

∂T

∂z
= −Bi

(
T − 23600

Re Ar

)
. (4.1)

This is the extreme case where T ∗
∞ is 6 ◦C higher than Tcold. Figure 20 shows the

variation of Rec and τc with Bi and Ar = 1. Rec and τc are very sensitive to Bi due to
the constant high temperature of the surroundings, and they approach the experi-
mental results with increasing Bi.
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Figure 20. Rec and τc with various Bi and Ar= 1 in the case of heating from the surround-
ings to the free surface. The heating stabilizes the flow, and Rec increases with increasing Bi.

5. Conclusions
Oscillatory thermocapillary convection in open cylindrical containers has been

investigated numerically to document its stability characteristics. Frequency F

increases with increasing Re near the critical region, while that of supercritical
convection approaches a constant value at larger Re.

Five, nine and twelve azimuthal waves near the critical region are found rotating
clockwise on the free surface with, respectively, Ar = 1, 2.5 and 3.33, while twenty
azimuthal nearly standing waves are observed on the free surface with Ar = 8. While
only a single-roll structure is observed up to Rec with each Ar, the multi-roll structure
appears beyond Rec in shallow liquid layers with Ar = 3.33 and 8. In general, the
number of azimuthal waves and multicells increases with increasing Ar, and τc

decreases with increasing Ar.
Both heat loss from the free surface and heating from the surroundings to the free

surface stabilize the flow, and their inclusion is necessary to achieve better quantitative
agreement with the experiments. Rec increases with increasing Bi while τc shows the
opposite trend.

We gratefully acknowledge computer resources from the Rutgers Computational
Grid composed of a Distributed Linux PC Cluster on which all computations were
performed.
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